If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2-9y=0
a = 16; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·16·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*16}=\frac{0}{32} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*16}=\frac{18}{32} =9/16 $
| 3c=7=3=c | | 13-14y=4y-3 | | 0.4x+0.1=0.2x+0.3 | | 11x-10=6x+11=39 | | y=72(0.913) | | 150x9+n=135000 | | 2x^2-8x(1/2)=96 | | 9.8=20(t) | | 27.5=y+3.3+1.7 | | 2^n=8^0 | | (2^n)^3=8 | | 2^2a=8 | | 28x=11+51 | | 2(m+3)=32 | | 36^-3x+3=(216)^x-1 | | 34z=23 | | (9b+1)=53 | | (3z+2)+8z=90 | | (8t-7)+91=180 | | (2c-3)+97=180 | | (2c-3)+97=90 | | .08475x=200 | | 1.08475x=200 | | 20x^2+10x-2=0 | | (x*x)-17x=80 | | 41-y=32 | | -9y+18=9(y-6) | | -3(w+1)=5w-3+2(3w+8) | | -5(2w-2)+8w=2(w+4) | | -5(2w-2)8w=2(w+4) | | 7(w-5)-3=-4(-5w+6)-9w | | 4(y+1)=6y-16 |